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Abstract— Libraries of trajectories are a promising way of
creating policies for difficult problems. However, often it is not
desirable or even possible to create a new library for every
task. We present a method for transferring libraries across
tasks, which allows us to build libraries by learning from
demonstration on one task and apply them to similar tasks.
Representing the libraries in a feature-based space is key to
supporting transfer. We also search through the library to
ensure a complete path to the goal is possible. Results are
shown for the Little Dog task. Little Dog is a quadruped robot
that has to walk across rough terrain at reasonably fast speeds.

I. INTRODUCTION
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Fig. 1. Illustration of a trajectory library. When queried at any point (e.g.
‘q’), the action (indicated by arrows) of the closest state on any trajectory
is returned

A trajectory library [1] is a collection of state sequences
annotated with actions. When controlling a system using a
trajectory library as a policy, the current state is used to find
the closest state on any trajectory. The action associated with
the nearest state is used as the output of the policy (figure
1). We find trajectory libraries to be a useful tool in solving
difficult control problems.

In many cases it is desirable to reuse an existing library
of trajectories to solve new problems. This is especially true
when the library is created manually, since there is no planner
to fall back to. In other cases, it is desirable to augment a
planner by adding special behaviors to a library that allow
the agent to handle particularly tricky parts for which the
planner alone cannot find satisfactory solutions. We would
like to reuse these behaviors on new problems.

This material is based upon work supported in part by the DARPA
Learning Locomotion Program and the National Science Foundation under
grants CNS-0224419, DGE-0333420, ECS-0325383 and EEC-0540865.

Fig. 2. Illustration of feature space. On the circled states as examples, we
show how state-action pairs could be specified in terms of local features
such as the relative positions of obstacles and the goal.

In this paper, we present a transfer algorithm. The algo-
rithm has two key ideas. One key idea is to represent the
library in a feature-based space. When using a feature-based
representation, instead of representing the state of the system
using its default global representation, we use properties that
describe the state of the system relative to local properties of
the environment. For example in a navigational task, instead
of using global Cartesian position and velocity of the system,
we would use local properties such as location of obstacles
relative to the system’s position (figure 2). This allows us
to reuse parts of the library in a new solution if the new
problem contains states with similar features. The transfer
to a new environment is done by looking for states in the
new environment whose local features are similar to the local
features of some state-action pair in the source environment.
If a match is found, the state-action pair is added into the
transferred library at the state where the match was found.

Fig. 3. Illustration of search through a trajectory library. For the given
start state, we find a sequence of trajectory segments that lead to the goal

The other key idea is to ensure that the library produces
goal-directed behavior by searching through the library.



Trajectory libraries are often used in a greedy manner to
pick an action based on the state of the system. If the library
was transferred to a new problem, there is no guarantee that
greedily picking actions will get to the goal. Parts of the
relevant state space might not even map to an appropriate
goal-directed action. This is especially true if the feature-
based representation used for transfer does not take into
account progress towards the goal. Even if individual state-
action mappings are goal-directed, it is still possible that
following such a greedy policy gets stuck or loops. We search
through the library to ensure that following the library will
lead to reaching the goal (figure 3).

II. RELATED WORK

Transfer of knowledge across tasks is an important and
recurring aspect of artificial intelligence. Previous work can
be classified according to the type of description of the
agent’s environment as well as the variety of environments
the knowledge can be transferred across. For symbolic plan-
ners and problem solvers, high level relational descriptions
of the environment allow for transfer of plans or macro
operators across very different tasks, as long as it is still
within the same domain. Work on transfer of knowledge in
such domains includes STRIPS [2], SOAR [3], Maclearn [4]
and analogical reasoning with PRODIGY [5]. More recent
relevant work in discrete planning can be found in [6], [7].

In controls, research has been performed on modeling
actions using local state representations [8], [9]. Other work
has been done to optimize low-level controllers, such as
walking gaits, which can then be used in different tasks
[10]–[13]. In contrast, our work focuses on finding policies
which take into account features of the specific task. Some
research has been performed to automatically create macro-
actions in reinforcement learning [14]–[17], however those
macro actions could only transfer knowledge between tasks
where only the goal was moved. If the environment was
changed, the learned macro actions would no longer apply
as they are expressed in global coordinates, a problem we
are explicitly addressing using feature-based representations.
Another method for reusing macro actions in different states
using homomorphisms can be found in [18].

Bentivegna et al. [19] explore learning from observation
using local features, and learning from practice using global
state on the marble maze task. Our approach to learning from
demonstration takes a more deliberate approach, since we
perform a search after representing the learned knowledge
in a local feature space.

Our approach is also related to the transfer of policies
using a generalized policy iteration dynamic programming
procedure in [20]. However, since trajectory libraries are
explicitly represented as state-action pairs, it is much simpler
to express them in a feature space.

For an overview of uses of trajectory libraries in control
and artificial intelligence, see [1].

III. CASE STUDY: LITTLE DOG

The domain to which we applied the algorithm is the Little
Dog domain. Little Dog is a quadruped robot developed
by Boston Dynamics (figure 4). It has four legs, each with
three actuated degrees of freedom. Two degrees of freedom

Fig. 4. Little Dog robot

(a) physical board

(b) computer model

Fig. 5. Sample terrain board

are at the hip (inward–outward, forward–backward) and one
at the knee (forward–backward). Torque can be applied to
each of the joints. This results in a 12 dimensional action
space (three for each of the four legs). The state space is
36 dimensional (24 dimensions for the position and speed of
the leg joints and 12 dimensions for the position, orientation,
linear velocity and angular velocity of the center of mass).
The task to be solved in this domain is to navigate through
rough terrain (figure 5).

The robot is controlled by sending desired joint angles to
an on-board PD controller. The desired joint angles can be
updated at 100Hz. The on-board PD controller computes new
torque outputs at 500Hz. The robot is localized using a Vicon
motion capture system which uses retro-reflective markers on
the robot in conjunction with a set of six infrared cameras.
Additional markers are located on the terrain boards. The
proprietary Vicon software provides millimeter accuracy



location of the robot as well as the terrain boards. We are
supplied with accurate 3d laser scans of the terrain boards.
As a result, no robot sensor is needed to sense the obstacles.

For difficult terrains, we use a joystick together with
inverse kinematics to manually drive the robot across the
terrain and place feet. Sequences of joint angles together
with body position and orientation are recorded and anno-
tated with the stance configuration of the robot. The stance
configuration describes which legs are on the ground and
which leg is in flight. Several trajectories are recorded with
the robot traversing multiple terrain boards in different di-
rections. These trajectories are automatically segmented into
individual footsteps according to the stance configuration.
Our algorithm then takes this library of footsteps and applies
it to new terrains.

IV. HOW THE LIBRARY WORKS WITHOUT TRANSFER

This section explains how the library works using global
or absolute state space coordinates. This is helpful for
understanding the implementation of the transfer algorithm,
which is explained in the next section.

Action Selection: When learning from demonstration with
Little Dog, the library contains sequences of steps that were
manually taught using a joystick remote control. A new step
is started whenever all four feet are on the ground. The
global position and orientation of the robot together with
the joint configuration forms a state on a trajectory. The
sequence of joint angles through lift off until all four feet
are back on the ground is the action associated with the
state. By using a trajectory library to pick which step to
take, the robot can succeed in traversing a terrain even if
it slips or if it is just randomly put down near the start of
any step. The global state-based lookup into the trajectory
library works as follows: When started or after completing a
step, the robot takes its current position, orientation and joint
configuration and computes the position of the four feet in
terrain coordinates. Then, for every step in the library, the
sum of the Euclidean distances between the current position
of the feet and their respective position at the beginning of
the step is computed. The step with the minimum sum of
the Euclidean distances is used as the next step to take.

Action Execution: In order to ensure smooth behavior,
before the sequence of joint configurations of the chosen step
can be played back, every joint is moved along a cubic spline
from its current angle to its angle at the start of the chosen
step. The time taken depends on how far the body is from
it’s intended position. The speed is chosen conservatively
to avoid slipping. Furthermore, if the joint angles are just
played back as they were recorded, errors in the position and
orientation of the robot would accumulate. In order to solve
this problem, an integral controller is added during playback
to correct for errors in body position and orientation. This
controller works as follows:

Every foot f has a three dimensional vector integrator
If associated with it. Instead of playing back the recorded
joint angles jf , we use the joint angles to compute the
body-relative three-dimensional position of every foot: xf =
FKf (jf ). The integrated vector is added to the body-relative
position of the foot to compute a new body-relative position
of the foot: x′f = xf + If . Inverse kinematics is used

to compute appropriate joint angles for this new position:
j′f = IKf (x′f ). These are the new desired joint angles.

In order to update the integrators, we first compute
the global terrain-relative position of every foot (Xf ) us-
ing the current joint positions and pose of the robot:
xf = FKf (jf ),Xf = POSE(xf ). We then hypothe-
size the robot being in the correct position and orientation
and compute body-relative positions of the feet’s current
terrain-relative positions in the ideal body frame: x df =
POSE d−1(Xf ). Some fraction of the difference between
the actual body-relative position of the feet and the ideal
body-relative position of the feet is added to the feet’s
integrators: I ′f = If +k · (x df −xf ). Assuming no further
slippage occurs, this control will move the body towards its
correct orientation and position. In order to have the feet step
into their intended locations, the integrator for each foot is
decayed to zero while the foot is in fight. Since the foot is no
longer on the ground in this case, the foot is no longer needed
to correct the body position and orientation. Assuming the
stance feet succeed in correcting the body’s position and
orientation, the flight foot, with zeroed integration term, will
step into its intended location on the terrain.

Fig. 6. Local frame

V. LIBRARY TRANSFER

Clearly, a global or absolute state space representation
of the policy is limited to a particular task. If the terrain
is moved slightly, the steps will be executed incorrectly.
Furthermore, if parts of the terrain have changed, the policy
cannot adapt to the changes. In order to solve these problems,
we created an algorithm for transferring trajectory libraries
to different environments. As the first part of the algorithm, a
local feature-based representation of the environment is used



Algorithm 1 concise transfer and planning description
• transfer library

– create height profile for every step
– create height profile for a sampling of positions and

orientation on the new map
– for each step, find best match and transform step

to the best match, discard if best match worse than
some threshold

• find appropriate steps to get from sstart to the goal sgoal

if p is a step, s(p) is the start state of the step, f(p) is
the final state of the step.

– add two steps, pstart and pgoal with s(pstart) =
f(pstart) = sstart and s(pgoal) = f(pgoal) =
sgoal

– ∀p, p′, find the Euclidean foot location metric be-
tween f(p) and s(p′).

– Define the successors of p, succ(p) to be the n p′
with the smallest distance according to the metric.

– Create footstep plans between all f(p), s(p′), s. t.
p′ ∈ succ(p)

– Perform a Best-First-Search (BFS) through the
graph whose vertices are the footsteps p and di-
rectional edges are defined from p→ p′ whenever
p′ ∈ succ(p)

– The final library consists of all steps p on the path
determined by the BFS as well as all generated
footsteps by the footstep planner on that path.

to find appropriate places for state-action pairs. In the Little
Dog domain, we create a local height profile for each step.
The origin of the local frame (figure 6) for the profile is
the centroid of the global foot positions at the beginning
of the step. The x-axis is aligned with a vector pointing
from the XY-center of the rear feet towards the XY-center
of the front feet. The z-axis is parallel to the global z-axis
(aligned with gravity). The height of the terrain is sampled
at 464 positions on a regular grid (0.35m × 0.20m with
.012m resolution) around this origin to create a length 464
vector. The grid is normalized so that the mean of the 464
entries is zero. In the same way, we then create local terrain
representations for a sampling of all possible positions and
rotations around the z-axis. The rotations around the z-axis
are limited to rotations that have the dog pointing roughly to
the right (θ ∈ {−π/4, π/4}). For every step in the library,
we then find the local frame on the new map that produces
the smallest difference in the feature vector. If this smallest
difference is larger than some threshold, the step is discarded.
The threshold is manually tuned to ensure that steps do not
match inappropriate terrain. Otherwise, the step is transferred
to the new location by first representing the position and
orientation of its start state and all subsequent states in the
local frame of the step. We then translate these local positions
and orientations back into global coordinates based on the
best local frame in the new map.

For performance reasons, after creating the feature vectors
for the matching of steps, we used principal component anal-
ysis (PCA) to project the vectors into a lower dimensional
space. The PCA space was created beforehand by creating

feature vectors for one orientation of all obstacle boards we
had. The first 32 eigenvectors, whose eigenvalues summed
to 95% of the total sum of eigenvalues, were chosen as the
basis for the PCA space.

Once all steps have been discarded or translated to new
appropriate positions, we perform the search through the
library. Due to the relocation, there is no guarantee that the
steps still form a continuous sequence. Depending on the size
and diversity of the source library, the steps of the new library
will be scattered around the environment. Even worse, some
steps might no longer be goal directed. In some sense, the
steps now represent capabilities of the dog. In places where a
step is located, we know we can execute the step. However,
it is unclear if we should execute the step at all or in what
sequence. We solve this problem by performing a search over
sequences of steps. In order to connect disconnected steps,
we use a footstep planner [21]. Given the configuration of
the robot at the end of one step and the beginning of another
step, the footstep planner can generate a sequence of steps
that will go from the first to the latter. A heuristic algorithm
is used to control the body and the actual leg trajectories on-
line while executing the footsteps from the footstep planner.

For the search, we generate a topological graph. The nodes
of the graph are the start state and the goal state of the
robot, as well as every step in the transferred library. Edges
represent walking from the end of the pre-recorded step
represented by the start node to the beginning of the pre-
recorded step represented by the target node. The cost of
every edge is roughly the number of additional steps that
have to be taken to traverse the edge. If the foot locations
at the end of the source pre-recorded step are close to the
foot locations at the beginning of the target pre-recorded
step of the edge, no additional steps are necessary. In order
to know the number of additional steps, the footstep planner
is used at this stage to connect the gaps between steps when
we generate the topological graph. Since the steps that are
output by the planner are considered risky, we assign a higher
cost to planned steps. (If the planner created reliable steps,
we could just use the planner to plan straight from the start
to the goal.) In order to reduce the complexity of the graph,
nodes are only connected to the n-nearest steps based on the
sum of Euclidean foot location difference metric. We then
use a best-first search through this graph to find a sequence
of footstep-planner-generated and pre-recorded steps. This
sequence is added to the final library.

VI. EXPERIMENTS

We performed several experiments to verify the effective-
ness of the proposed algorithms. For all experiments we
started with 7 libraries that were created from two different
terrains. Using a joystick, one terrain was crossed in four
different directions and the other terrain was crossed in
three different directions (figure 7). The combined library
contained 171 steps.

In order to test transfer using terrain features, we first
looked at transferring the steps from these seven libraries
to one of the original terrains. In theory, the steps from the
library that was created on the same terrain should match
perfectly back into their original location. Some spurious
steps from the other terrains might also match. This is indeed



Fig. 7. Excerpts from the trajectory library: The black line marks the
trajectory of the body while the colored lines correspond to the four feet
(red=left side, green=right side; bright=front, dark=back). Crosses mark the
position of the feet at the start of every step. The dog moves from left to
right

Fig. 8. Library matched against one of the source terrains. Some crosses
do not have traces extending from them, since they are the starting location
for a foot from a step where one of the other three feet was moving.

the case as can be seen in figure 8. The spurious matches are
a result of some steps walking on flat ground. Flat ground
looks similar on all terrains.

Fig. 9. Library matched against new, modified terrain

When modifying the terrain, we expect the steps to still
match over the unchanged parts. However, where the terrain
has changed, the steps should no longer match. For this
experiment we modified the last part of a terrain to include
new rocks instead of the previously flat part (figure 9).
The matching algorithm correctly matches the steps that are
possible and does not incorrectly match steps on the modified
parts.

While the matching correctly identifies where to place
steps in the library, the resulting library needs to be im-
proved, as anticipated. There are large gaps between some
steps. Moreover, some spuriously matched steps do not make
progress towards the goal but can lead the robot away
from it, if they happen to be matched greedily. We now
use the search algorithm described earlier to postprocess
the resulting library. The resulting plan should select the
right steps, throwing out the spurious matches. Furthermore,
by invoking the footstep planner to connect possible steps
together, it will also fill in any gaps. This happens correctly

Fig. 10. Result of searching through the library on modified terrain with
the green spot as the goal. The steps coming from the footstep planner do
not show traces from the starting places of the feet (crosses), since the foot
trajectories are generated on the fly during execution. The body trajectory
for planned steps are only hypothetical trajectories — the on-line controller
is used for the actual trajectories during execution.

for the modified map (figure 10).

Fig. 11. Trace of Little Dog executing the plan

Finally, in order to validate the transfer algorithm, we
executed the resulting library on the terrain with the modified
end board. A plan, from a slightly different start location
but otherwise identical to figure 10, was executed on the
robot and the robot successfully reached the goal, switching
between steps from the source library that were created
by joystick control and the synthetic steps created by the
footstep planner (figures 4,11).

VII. DISCUSSION

The current algorithm allows each state-action pair in the
library to match only once. However, it is quite conceivable
that there are multiple states in a new task where an action
could be executed. Finding a suitable second location is
not trivial, though, since the second best match will usually
be right next to the first match. One possible solution is
to look for local maxima only or to introduce a minimum
distance that matches have to be away from each other for
any particular state-action pair.

Another limitation of the current algorithm is that given
a start state, the search through the transferred library only
yields a single trajectory. In order to increase the number of
trajectories in the final library, one could perform multiple
searches from different start states. Alternatively, a back-
wards search from the goal could be performed and the
complete search tree added to the library. Finally, instead
of searching once, it is possible to continuously search
through the library during execution. Since the search is on
a topological graph, this search would be much faster than
the search performed by a path planning algorithm in the
continuous state space. The gaps between steps are already
filled in when creating the topological graph and do not have
to be replanned during the continuous search process.

A more radical departure from the current algorithm would
be to do away with explicitly finding global states where the
features of the state-action pairs from the original library



match. Instead, one could greedily match actions from the
library based on local features of the start state and its
vicinity. After executing the action, this can be repeated.
Applying the library greedily based on local features does
not allow for searching and might result in dead-ends. Also,
it will not allow the robot to cross large gaps in the library
if it is not in the vicinity.

Alternatively, one could search for a sequence of steps
leading towards the goal, performing a local search at every
expansion to find one or more suitable successor steps in the
vicinity of the termination of the previous step. However,
this will not work if the local searches fail to find matching
steps because of gaps — large areas where no steps in the
library match. One could extend the local search area until,
in the limit, the complete relevant state space is searched
at every expansion. This would essentially be the algorithm
that is presented here.

In the Little Dog domain, we have shown that we can
transfer trajectory libraries to modified versions of the terrain
where the source libraries came from. However, the use of
sum-of-squared errors of the feature vectors results in a very
restrictive matching. For Little Dog, it is important that the
terrain supports the stance feet and that neither the body nor
the flight foot collide with the terrain. Hence, there are certain
variations of the terrain (lower terrain in parts where the
stance feet are not supported or higher terrain in parts which
are not occupied by any part of the robot) that can be easily
tolerated. However, the current metric would not match when
there are inconsequential terrain changes. Unfortunately, due
to inaccuracies in the robot model, it is not possible to just
compute the swept volume of the robot’s body and check
for collisions: in many steps, feet move close enough to the
terrain that such a collision checker would detect collisions
and reject the step, even if the step is executable.

VIII. FUTURE WORK

In our future work, we would like to address some of the
issues mentioned in the Discussion section. In particular, we
would like to explore matching algorithms that more closely
match the capabilities of the dog. This means that matching
needs to take into account collisions in a meaningful way, so
that changes in the terrain that don’t affect the executability
of a step do not count against the step.

Furthermore, we would like to allow for a step to be
matched multiple times. We hope to obtain denser libraries
after the transfer so that we are less reliant on the footstep
planner. Ideally, if we have enough steps in our source
library, no footstep planning should be necessary.

IX. CONCLUSION

We introduced a method for transferring libraries of trajec-
tories to new environments. We have shown that the method
correctly transfers libraries in the Little Dog domain based on
terrain features. Furthermore, a search is used to effectively
find relevant steps on the new terrain and fill in gaps in the
library using a footstep planner.
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